Tag Archives: mRNA vaccine

Dr Robert Hess: Updates and Revises

Dr Robert HEss

Dr Robert Hess – 02/04/2022

Dr Robert Hess: Updates and Revises Section 4 of its Prophylactic concept.

In the current circumstances, it is more important than ever to maintain a clear overview. The number of vaccinations and infections, the virus variants in circulation and the available vaccines, the course taken by an infection, possible side-effects and the administration of various drugs against severe COVID-19 – these are all factors that make our efforts to provide comprehensive protection more complex, requiring close attention and detailed documentation. Protection of the organism as a whole remains our priority, which is why we are now broadening the scope of our prophylactic concept and scheduled check-ups.


In the last two years, our immune system has been through a lot – it has had to adapt and evolve, to adjust and play a supportive role in meeting the new challenges of either infection with COVID-19 or injection with an mRNA vaccine. To complicate matters, a pandemic is a fast-moving and generally unpredictable state of affairs that may drag on over months and years. Right at the start of the COVID-19 pandemic, I placed great emphasis on accurate documentation of the vaccination and infection status of my clients in order to ensure that data is systematically processed and that possible sequelae are spotted. The information we have gathered will now be evaluated and incorporated into our amended prophylactic program.

With this specific focus on prevention, we aim to identify and monitor potential long-term effects of SARS-CoV-2 infection. Long covid and post-covid are both sequelae of the disease, but they describe a very broad and elusive picture of diverse symptoms. As the pandemic has progressed, it has become increasingly clear that infection with SARS-CoV-2 can have long-term health consequences, even if the course of the disease itself is mild or is asymptomatic and therefore goes unnoticed. For this reason, I pay special attention to the sequelae of COVID-19 with the aim of defining these terms more precisely for our clients in the future.


At the same time, we also have to consider the possibility that certain symptom manifestations might instead be associated with vaccine damage and the long-term consequences of repeated vaccinations. More and more studies are producing information about the effects of the spike protein and about endothelial damage. However, we are surprised that there are no large-scale studies on possible carcinogenic effects or immunomodulatory changes so far. We will continue to keep this on our radar.

This specific focus on prevention in relation to the COVID-19 pandemic also shifts attention to the internal organs, where we are primarily looking at the kidney, liver, coronary arteries and the bronchial and neurological systems. Likewise, our prophylactic recommendations will also cover the relevant techniques and diagnostic methods. For example, we consider echocardiography (ultrasound examination) in cardiac and coronary artery diagnostics as no longer sufficient for our requirements and would therefore favor diagnostics based on a cardiac MRI scan.

In conclusion, I would like to inform my clients that we now intend to shorten the intervals for preventive care planning. This has the advantage that continuous monitoring of our clients and the availability of individualized data allows us to intervene at an early stage and thereby prevent damage in the long term.

Dr Robert Hess: Weekly Omicron Update

Dr Robert HEss

Dr Robert Hess – 01/27/2022

Dr Robert Hess: Weekly Omicron Update

An end to the Omicron wave is in sight

All regulations and restrictions in England have now been removed (though not in Scotland, Wales or Northern Ireland where such decisions are devolved to regional parliaments). According to UK Health Minister Sajid Javid, England will be the most open country in Europe. Omicron cases also appear to be peaking in the United States, although the number of deaths has not yet shown any sign of falling away. On Tuesday, Pfizer/BioNtech announced the start of clinical trials for their new Omicron vaccine. Meanwhile, a new Omicron subvariant is coming under global scrutiny.

Restrictions put in place to stem the Omicron wave will be ditched in England on Thursday. Mandatory mask-wearing, COVID-19 vaccination passports and Home Office guidelines – known as Plan B – will no longer apply. According to Health Minister Sajid Javid, this will make England “the most open country in Europe”.
But are the restrictions being lifted too soon? Infection numbers may be down, but they are still well above the levels seen at the height of last winter.

This time, however, the starting point is different. A combination of immunity built up through vaccination and previous infections makes England – and indeed the rest of the UK – one of the best protected countries in the world. According to the latest data from the Office for National Statistics, more than 97% of the population has antibodies. At the start of the pandemic, of course, that percentage was zero. This does not necessarily mean that the population is immune to infection, but their immune system is at least better equipped to fight the virus. The result is that COVID-19 now causes milder illness and the mortality rate has dropped significantly. However, this is also partly due to the fact that Omicron is inherently less severe.
This combination has helped to keep the number of deaths in recent weeks much lower than in previous waves and at a level comparable to a severe flu season. Objectively, this is pretty much the best-case scenario compared to what was predicted when Omicron first arrived on the scene.

Hospital admissions in England appear to have peaked at just over 2,000 per day – only a third or a quarter of the figure predicted by modeling for a worst-case scenario; even the Scientific Advisory Group for Emergencies (SAGE) which officially advises the government expected it to be at least 3,000.

Omicron cases also appear to be slowly but surely peaking in the USA. However, the number of deaths continues to rise. As many as 700,000 new cases are reported daily in the United States. This is fewer than earlier in January, but still far more than any previous increase. We expect a similar trend here to the one seen in Europe.


Pfizer/BioNTech announced on Tuesday that they have begun clinical trials for the new version of their vaccine that specifically targets the COVID-19 Omicron variant. They plan to test the immune response elicited by the Omicron vaccine on 1,400 volunteers in the United States. It will be administered both as a triple shot to unvaccinated persons and as a booster shot for individuals who have already received two doses of the manufacturer’s original vaccine. They are also testing a fourth dose of the current vaccine against a fourth dose of the Omicron-based vaccine in people who received a third dose of the original vaccine three to six months earlier.
Pfizer/BioNTech further announced that, depending on the amount of clinical trial data required by regulatory agencies (FDA, EMA, etc.), it is quite possible that the original plan to launch the Omicron vaccine by the end of March may not be realized.

Some countries have already begun offering additional booster doses. However, a recent study from Israel has already shown that, while a fourth dose of mRNA vaccine increases antibodies, this is not sufficient to prevent infection with Omicron.


Just when some countries are experiencing a decline in cases and restrictions are being relaxed, scientists are now observing another sub-lineage of the Omicron variant which has been designated BA.2. Is this the beginning of another worst possible timing scenario? The subvariant has spread rapidly in Denmark and the United Kingdom, with BA.2 accounting for nearly half of the recent cases in Denmark. BA.2 has been circulating in the United Kingdom for some time, but at a lower level than BA.1, the Omicron type that predominates there. In parts of India and the Philippines, BA.2 is the main version of Omicron.
In previous waves, there were large regional differences as to which sub-lineage of a particular variant would succeed in asserting its dominance.

While BA.2 is definitely something to keep an eye on, from what we know so far, it does not present any great cause for concern. It could be that it has a slightly higher transmission rate compared to BA.1, but from the data currently available, it does not appear to cause more severe symptoms or to manifest special abilities to bypass the immune system. However, we await further developments.

The skepticism of Dr Robert Hess regarding the efficacy of all previous vaccines against the Delta variant has been confirmed

Dr Robert HEss

Dr Robert Hess – 07/20/2021

The skepticism of Dr Robert Hess regarding the efficacy of all previous vaccines against the Delta variant has been confirmed by the announcement from BioNTech/Pfizer that they are working on a vaccine that will specifically target this mutant.

The Delta variant of the novel coronavirus, which is causing concern across the whole of Europe, is now starting to show up in America. BioNTech and its manufacturing partner Pfizer announced last Friday that they are developing an updated version of the Pfizer/BioNTech Covid-19 vaccine that will target the complete spike protein of this latest variant. They also stated that the first batch of this vaccine consisting of approximately 20,000 doses has already been produced at the Mainz plant in Germany. The clinical trials are due to start in August this year.

It was seven and a half months before the original vaccine received official approval, but for the adapted version, the procedure could be accelerated. The urgency is even Dr Robert Hess because scientists have detected new mutations in the meantime that are significantly more complex. This confirms that we were right to express our reservations about the effectiveness of the current crop of vaccines against the Delta variant.

We have always taken with a pinch of salt the headline figures, which tend to be empirical, have so far not been backed up by any clinical study and are primarily intended to shape public opinion. The Pfizer vaccine is the best to have emerged to date, so with the decision by the clear world market leader to go down this route, we see our assessment as being vindicated. Based on information from unofficial sources, we have reason to believe that nearly all vaccine manufacturers are now engaged in developing new vaccines against the spike protein of the Delta variant. So the question now arises as to what happens next with booster vaccines. The Pfizer/BioNTech team are already planning far ahead, having notified FDA, the EMA and other regulatory authorities of their intention to submit an application for a third dose booster jab. We interpret this as confirmation of our assessment that the protection afforded is significantly reduced due to the relatively low antibody production of the vector-based vaccines, and the insufficient T-lymphocyte-based immunization provided by the mRNA vaccines. This is precisely what our Covid-19 antibody and T-cell monitoring has been confirming for some time. The protection conferred by vaccination persists for a much shorter duration than expected, and the purpose of the third jab is to boost immunity sooner than was originally envisaged.

A conservative estimate is that a third dose is needed six months after the first course of vaccination to maintain the highest possible protection. While the FDA has not yet made any response, the EMA is already signaling that it would be premature to issue any statement either way, because there is not yet enough data from the vaccination campaigns and ongoing studies to draw any conclusion. In this matter too, we disagree with the EMA, because there are clear indications that vaccine immunity is significantly lower and lasts for a shorter period than expected. For this reason, we cannot understand the hesitancy on the part of the EMA.

The crucial point is that full vaccination against the Delta variant has to be the priority. With regard to the first round of vaccination, there is an excellent paper from the Pasteur Institute in Paris, which was published in Nature magazine. Here, AstraZeneca and BioNTech/Pfizer vaccines were tested for efficacy against the Delta variant. Only 10% of recipients were protected after a single shot, but the figure rose to about 95% after the second dose. However, we consider these estimates to be wishful thinking. The findings suggest that the first vaccination offers virtually no protection against the Delta variant but that the success rate is significantly enhanced by the second dose. However, all of our Premium clients have already been double jabbed, so they have already jumped over this particular hurdle. There are many millions of people in Europe who have not yet followed up a first dose of AstraZeneca with a second. These people are virtually unprotected against the Delta variant.

The same paper from the Pasteur Institute addresses the question as to whether individuals who have recovered from a first bout of Covid-19 are resistant to the Delta variant, and the answer is an emphatic NO. Survivors must have at least one dose of vaccine to come close to adequate protection against the Delta variant. Unlike the EMA, which recommends that this booster vaccination should not be given until six months later, we believe that the AstraZeneca follow-up jab should be administered 8 to 12 weeks after recovery.

We have identified relevant cases among our Premium clients. Here, the situation is much more transparent, because our immunity testing allows us to give a clear diagnosis of the effects of an infection, based on T-cell immunity and antibody formation. From these results, we make a personalized and individual recommendation as to when a booster vaccination should be carried out and with which vaccine. Because the WHO still does not give a reference value for immunity for both pillars, we are using our own findings as reference values to decide if and when a booster should be administered, or whether it makes more sense to wait for a complete solution based on the next-generation vaccines. Because the picture could change again in the autumn as new variants come along and, depending on the level of immune protection provided by vaccination in each individual, it will be necessary either to start completely “from scratch” with the administration of a next-generation vaccine, or to reinforce existing protection with a booster jab.

 protection with a booster jab.As things stand, we have to assume that a booster is necessary when antibodies, measured as BAU/ml, fall below 2,000. And of these, at least 70% must be neutralizing antibodies, of which again at least 30% fall into the highly effective category. In T-cell immunity, which is ultimately at cellular level, the interferon-Gamma release in the index should not be higher than 5.0, and the interleukin-2 release should not be greater than 2.0. Based on our clients’ own monitoring results, these are the reference values that we currently see as the benchmark for maintaining perfect immune status. They must, of course, be combined with all the other values that signify immunological response. For SARS-CoV-2 in particular, these are our reference values.

The fact that the vaccination campaigns in general are not really getting anywhere near tackling the Delta variant with the existing vaccines is a phenomenon that we have observed for some time in Israel and also in the UK. But in Israel, the trend is particularly noticeable. The country has had by far the speediest vaccination campaign in the world, yet now the daily incidence rate has risen to 450 per 100,000 population. That is one of the highest figures that Israel has had to date, and most alarmingly, 7% of those who have been completely vaccinated fall seriously ill and have to be treated in intensive care units. This is a very high rate, considering that Israel administered mainly mRNA vaccines. In the meantime, face coverings have again been made compulsory in indoor spaces. So here, too, we see the progress made going into reverse. Ignoring the EMA’s hesitant attitude towards approval, the Israeli government has started to administer booster vaccines to certain groups.

For this reason, we are again dubious about the recent statement issued by Johnson & Johnson that its own vaccine is 85% effective against the new mutant and that the immunity it confers will last at least eight months. Frankly, we are astonished by J&J’s assertion that protection lasts eight months when the Delta variant has only been in circulation outside India for the past ten weeks.

The consequences of the Delta variant are enormous. Many countries are initially ignoring the spread of infection, the UK being a notable example. Ultimately, it all comes down to political expediency. And in this context, we think we are heading in a direction where each person, individually and for themselves, devises their own strategy for coping with the pandemic in the coming years, because governments will increasingly withdraw from medical approaches and economic-political factors will instead guide their decision making. One such decision may, of course, be to adopt a policy of so-called “herd immunity” which assumes a 90-95% vaccination rate. This is a prospect that is looking increasingly difficult to achieve. We have had our reservations about the feasibility of herd immunity from the outset and see it as an unattainable goal at this stage.

Some countries remain very cautious, for example Norway, which has postponed its proposed step-by-step reopening. Other governments, such as the French, have gone even further and cancelled arrangements. There are countries where the Delta variant is beginning to circulate which have a very high vaccination rate, such as Chile. High infection rates are already being registered here, with severe cases being treated in intensive care units. This is not exclusively due to the Delta variant, but also to the fact that in these countries inoculation was mainly carried out with Chinese vaccines, most of which are protein-based and achieve efficacy rates of less than 50%. We are convinced that the protein-based vaccines will prove to be even less effective against the more dangerous mutations that lie ahead. And it has to be remembered that the Chinese vaccine products have not passed the rigorous standards of the major regulatory authorities in the western world, not least because data from the critical third phases of testing were never published in reputable peer-reviewed medical journals. There have been no estimates of efficacy in vulnerable, elderly people because too few subjects from this group were included in large-scale trials. Therefore, at least for the time being, the Asian vaccines are playing a negligible part in the fight against the pandemic.

In a recent Keynote, we made our forecast for this autumn in the northern hemisphere. We cannot share the optimistic predictions of a less harsh fourth wave next winter, not least because the mutations already observed are showing another clear change of direction with the Delta variant.

This is where the excellent work being done by the Com-Cov research team in the UK comes into its own. A study on vaccination and cross-vaccination regimens has also begun in Germany. As we reported in a previous Keynote, AstraZeneca and BioNTech (or indeed Moderna) have different strengths that complement each other well. AstraZeneca is particularly good at triggering a T-cell response, whereas BioNTech mainly activates antibody formation. Both vaccines provide the immune system with minimally modified learning material, which is crucial, as was clearly demonstrated in the Com-Cov study. The second BioNTech vaccination is therefore ideal for retraining immune cells already boosted by a first dose of AstraZeneca.

In this scenario, the second vaccination with BioNTech helps the body to remove unsuitable antibodies and T-cells from the body, of which there is an abundance after the AstraZeneca vaccination, thereby enabling the immune system to respond even more efficiently to the pathogen. These additional, unsuitable antibodies are precisely those which, in our view, could constitute the so-called “infection-enhancing” antibodies. We have seen data from the Charité in Berlin that also point in this direction. Should the merits of “mix-and-match” vaccination be confirmed, it will of course be included as an option in the individual strategies we devise for our Premium clients.

How long does the protection afforded by vaccination last?

Dr Robert HEss

Dr Robert Hess – 06/19/2021

How long does the protection afforded by vaccination last? This is a vital question that can only be answered when enough time has elapsed for results to come in.

There is one thing we can be certain of, however, namely that the protection afforded by vaccines does not live up to the claims made by their manufacturers. We strongly disagree with the assertion that “vaccine protection will remain at the same high level for approximately one year, so that we can get into an annual vaccination cycle like the one we have for influenza.” This is the reason why we set up our SARS-CoV-2 Antibody Profile Monitoring for Premium clients at the start of this year, measuring levels of SARS-CoV-2 antibodies as well as T-helper cells specific to SARS-CoV-2 and thereby covering both pillars of the immune response.

There are as yet no clinical studies to refer to, so we are in completely uncharted territory here. It is a matter of great concern to us that some of our clients who have been fully vaccinated for several months now appear to have built up little if any immune protection. In the circumstances, this monitoring of antibodies makes a lot of sense, and various scientific institutes have approached us to draw on our experience in this field.

Immune protection is, of course, also a subject of concern to the wider population, and many people, fearing that the immune protection they have gained from vaccination may already be weakening, are already asking for a third booster shot. The fact is that not a single scientific body has ventured an opinion on the matter. This means that Dr Robert Hess is entering completely new territory. We will not be making any general recommendations, as the individual situation of each client is different. The structure of each immune system is also highly individual with regard to natural immune response, vaccine-induced antibody levels and exposure to mutation events dependent on geographic location. We will therefore only make recommendations about booster jabs or next generation vaccines tailored to the individual client. We believe that it is simply impossible to devise a vaccination scheme in which the intervals specified are valid for everyone. This simply makes no sense. Consequently, a universal recommendation is completely out of the question.

Dr Robert Hess has also gained insight into the workings of the T-cells. First indications are that that they prevent severe infections, but not to the extent that has now been claimed in various scientific publications.

Furthermore, we also have to consider the special needs of so-called “low responders” or “non-responders” to the vaccines among our own clientele. We have to assume that such cases are more frequent than has been surmised so far. Low responders and non-responders are individuals who have acquired minimal or zero immune protection through vaccination. Among our clientele, we also have non-vaccinated Covid-19 survivors of whom around 25% have not built up any protection at all. This is a significant difference compared to measles, for example. The immunity of those who have recovered and those who have been vaccinated clearly decreases, and the curve falls away dramatically after about three months. The idea that there are people who cannot become infected has been absolutely refuted. Most people who have not been vaccinated will probably become infected at some point, but whether they end up as symptomatic or asymptomatic cases is another question. This is essentially what characterizes respiratory viruses in contrast to HIV, for example. There are people who are immune to the AIDS virus due to certain genetic polymorphisms which, by the way, we also measure as standard for our Premium clients. This is not the case with the novel coronavirus, unlike the Spanish flu, with which it is repeatedly compared: it has to be emphasized that the history of SARS-CoV-2 so far clearly points to each successive mutation event being more infectious and/or more dangerous.

The current prognosis of the Task Force of Dr Robert Hess still holds true: the pandemic is going to persist for a very long time, and the prospect that the virus will be with us forever is becoming more and more likely. This is because recovered and vaccinated individuals can still be carriers of SARS‑CoV‑2 and because the virus is mutation prone. There is also the potential for the animal kingdom to act as a reservoir for the disease – it is not yet known which animals can become infected with SARS‑CoV‑2 and spread the virus. From the case of the mink farms in Denmark, which we reported on in great detail a year ago, there are now very alarming statistics on how dangerous it is when animals also become infected. If we assume a similar regime as with influenza (bearing in mind that we have only moderate control over this less aggressive virus), then we will need to have an annual cycle of vaccination, because the previous year’s vaccines are never a perfect fit for the pathogens currently in circulation. This will definitely be the case with SARS-CoV-2 as well. Every year, the death rate from influenza in a medium-sized country such as Germany is around 10,000, sometimes even higher. In the more severe influenza years, for example on the American East Coast, the intensive care units are stretched to capacity. And if we add Covid-19 to the equation, hospital systems worldwide will have to be restructured.

As Dr. Robert Hess mentioned already, the level of protection depends on the sum total of antibodies, which obviously forms part of our monitoring. The antibodies are all directed against the spike protein, but not necessarily against the same regions. Many different types of antibodies are formed, which our monitoring classifies according to their effectiveness. In the case of a second infection, antibodies can even amplify the symptoms. However, the more antibodies there are in total, the greater the probability there will be some that also protect against mutations. The crucial question here is how high the antibody titer must be to protect against infection. In professional circles, we call this the “correlate of protection”, a figure that is usually defined by the WHO. Hepatitis provides a precedent: when the concentration of antibodies falls below a certain value, vaccination is called for; as long as it remains above that value, vaccination is not required. This is how the disease is managed. No such value exists for SARS-CoV-2, as no studies have been done on this so far. From our own SARS-CoV-2 antibody monitoring, we assume an average value of at least 3,000 BAU per mL, where BAU refers to binding antibody units with the relevant average efficacy classification.

Among the low responders and non-responders, there is a large group of people who take medications that suppress the immune system, or who have a donor organ and take drugs that prevent the immune system from rejecting it. This inevitably has the consequence of making pathogens difficult to fight off, but at the same time, the reaction to vaccine antigens is also weakened. This is a situation that affects patients who have to take anti-cancer drugs that affect the functioning of the immune system. Some of these medications can almost completely eliminate the B lymphocytes, which are important for the formation of antibodies. This is because the immune response occurs in several parallel pathways. The reaction to antigens produced to counter pathogens or derived from vaccination depends on how well the individual pathways work. One level is the antibody response, for which the above-mentioned B lymphocytes are indispensable. For example, rituximab, which is prescribed to alleviate certain types of cancer or arthritis, prevents the formation of B-lymphocytes and as such is a drug that needs to be taken into account here. Furthermore, there are steroids and antimetabolites that inhibit cell division and thus impair immune function in various ways. Added to which, there are the calcineurin inhibitors, such as cyclosporine and tacrolimus, which alter the T-cell response, namely that part of the immune response that may offer a certain long-term protective effect.

In non-responders with rheumatic diseases, their treatment usually involves a smaller number of immunosuppressive drugs. The dosage and effect are therefore less significant than with immunosuppression in organ transplant recipients or certain tumor patients. Nevertheless, a reduced effect is also to be expected here. The same applies to allergy sufferers who occasionally take antihistamines or use sprays and creams containing cortisone. There is definitely a reduced effect here, though by no means as drastic. We have already observed this with our Premium clients in the analysis of their antibodies.

In answer to the question of whether there is at least a T-cellular immunity in the case of a poor antibody response, we have evidence to support this, but not nearly as definitively as has been suggested in scientific publications over recent months. There have been indications that some immunity is gained, but at a far lower level than assumed. In our opinion, T-cells offer virtually no protection against actual infection, but they do make a severe course of disease less likely.

We already mentioned that we are working to build up T-cell specific immune response alongside antibodies. This development is eagerly awaited.

The question of whether mRNA or vector-based vaccines are preferable for the low-responder groups arises regardless of the reasons for their immune system deficiency. Ultimately, we have to assume that congenital immunodeficiency is a contributory factor with low-responders, irrespective of the risk groups just mentioned. This is confirmed for us on the one hand by the data derived from our own Premium clients, and on the other hand by the data that has come to us from the UK. To date, it has been shown that higher antibody titers can be expected after a first vaccination with an mRNA-based vaccine than after a first vaccination with a vector-based vaccine. As regards T-cell level, however, the situation is exactly the reverse: a higher value can be observed after a first vaccination with a vector-based vaccine. We should soon have the relevant data for the second vaccination. We see here that the combination of a first vaccination with a vector-based vaccine and second vaccination with mRNA can produce up to 10 times more antibody titers than if a vector-based vaccine is administered twice. As far as T cells are concerned, the combination of both principles also seems to be very effective. And that is why the best strategy for booster vaccinations has to be clarified with some degree of urgency. Our vaccinated clients have almost exclusively received an mRNA-based vaccine for both jabs.

Regarding the question of how a program of booster vaccinations might look, there are a couple of options available: on the one hand, a next-generation mRNA vaccine which also increases T-cell stimulation, and on the other hand (depending on the results in those affected), it may be possible to switch to a vector-based vaccine for the booster.

In conclusion, we can say that individualized vaccination schedules would be the optimal route to go down. I see it as my job to develop a long-term individual vaccination scheme.